====== Common probability distributions ======
===== Gaussian/Normal =====
* Continuous
* Parameters
* $\mu \in \mathbb{R}$ (mean)
* $\sigma^2 > 0$ (variance)
* Support: $x \in \mathbb{R}$
* PDF: $\frac{1}{\sigma \sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$
* Mean/expectation: $\mu$
* Variance: $\sigma^2$
==== Calculating CDF ====
$P(X < x)$ for $X \sim \mathcal{N}(mu, sigma)$
p = normcdf(x, mu, sigma)
====Calculating inverse CDF or quantile====
$\mathbb{P}(X \leq q) = 1 - alpha$ for $X \sim \mathcal{N}(mu, sigma)$
q = norminv(1 - alpha, mu, sigma)
===== Binomial distribution =====
* Discrete
* Parameters
* $n \in \mathbb{N}_0$ (number of trials)
* $p \in [0, 1]$ (probability of success of single trial)
* Support: $\{0, 1, ..., n\}$
* PMF: ${n \choose k} p^k (1-p)^{n-k}$
* Mean: $np$
* Variance: $np(p-1)$
===== Bernoulli =====
* Discrete
* Special case of binomial for $n=1$
* Parameter: $p \in [0, 1]$ (probability of success)
* Support: $\{0, 1\}$ (either 0 or 1)
* PMF: $p^k(1-p)^{1-k}$
* Mean/expectation: $p$
* Variance: $p(1-p)$
===== Poisson =====
* Discrete
* Parameter: $\lambda > 0$
* Support: $\mathbb{N}_0$ (0, 1, ...)
* PMF: $\frac{\lambda^ke^{-\lambda}}{k!}$
* Mean/expectation: $\lambda$
* Variance: $\lambda$
===== Exponential =====
* Continuous
* Parameter: $\lambda > 0$ (rate)
* Support: $[0, \infty]$
* Mean: $\frac{1}{\lambda}$
* Variance: $\frac{1}{\lambda^2}$