====== LTI filtering of WSS processes ====== Let $x(\dot)$ be a [[kb:stationarity#Wide-sense stationarity|wide-sense stationary process]] with: * Mean $\mu_x$ * Autocorrelation $R_{xx}(\tau)$ * Autocovariance $C_{xx}(\tau)$ * $E[x^2(t)] \lt \infty$ Let $y(t) = h \ast x(t)$. Then, the following relations are true: $$ E[y(t)] = H(j0) \mu_x $$ $$ R_{yx}(\tau) = h \ast R_{xx}(\tau) $$ $$ C_{yx}(\tau) = h \ast C_{xx} (\tau) $$ $$ R_{xy}(\tau) = \overleftarrow{h} \ast R_{xx}(\tau) $$ $$ C_{xy}(\tau) = \overleftarrow{h} \ast C_{xx}(\tau) $$ $$ R_{yy}(\tau) = h \ast \overleftarrow{h} \ast R_{xx}(\tau) $$ $$ R_{yy}(\tau) = h \ast \overleftarrow{h} \ast C_{xx}(\tau) $$ * $y(t)$ is also wide-sense stationary. * $y(t)$ is jointly wide-sense stationary with its input. ===== General form: ===== Given $y = h \ast x$ and $z = g \ast w$: $$ R_{yz}(\tau) = h \ast \overleftarrow{g} \ast R_{xw}(\tau) $$ ===== Power spectral density ===== //Main article: [[kb:power_spectral_density]]// CT case: $$ R_{xx}(\tau) \leftrightarrow S_{xx}(j\omega) $$ $$ C_{xx}(\tau) \leftrightarrow D_{xx}(j\omega) $$ DT case: $$ R_{xx}[m] \leftrightarrow S_{xx}(e^{j\Omega}) $$ $$ C_{xx}[m] \leftrightarrow D_{xx}(e^{j\Omega}) $$