Table of Contents

Table of Fourier transforms

CTFT

$$ x(t) \leftrightarrow X(j\omega) $$

$x(t)$ (CT signal) $X(j\omega)$ (CTFT)
$\delta(t)$ $1$
$\delta(t - t_0)$ $e^{-j\omega t_0}$
$1$ $2\pi \delta(\omega)$
$e^{j\omega_0 t}$ $2\pi \delta(\omega - \omega_0)$
$e^{-at}u(t), \mathrm{Re}\{a\} > 0$ $\frac{1}{\alpha + j\omega}$
$u(t)$ $\frac{1}{j\omega} + \pi \delta(\omega)$
$\frac{\sin \omega_c t}{\pi t}$ $\left\{ \begin{array}{ll} 1, & -\omega_c < \omega < \omega_c \\ 0, & \mathrm{otherwise} \end{array}\right.$
$\left. \begin{array}{ll} 1, & -M \leq n \leq M \\ 0, & \mathrm{otherwise} \end{array} \right\}$ $\frac{\sin \omega M}{\omega / 2}$

DTFT

$$ x[n] \leftrightarrow X(j\Omega) $$

$x[n]$ (DT signal) $X(j\Omega), -\pi \lt \Omega \leq \pi $ (DTFT)
$\delta[n]$ $1$
$\delta[n - n_0]$ $e^{-j\Omega n_0}$
$1$ $2\pi \delta(\Omega)$
$e^{j\Omega_0 n} (-\pi \lt \Omega_0 \leq \pi)$ $2\pi \delta(\Omega - \Omega_0)$
$a^n u[n], |a| \lt 1$ $\frac{1}{1 - ae^{-j\Omega}}$
$u[n]$ $\frac{1}{1-e^{-j\Omega}} + \pi\delta(\Omega)$
$\frac{\sin \Omega_c n}{\pi n}$ $\left\{ \begin{array}{ll} 1, & -\Omega_c \lt \Omega \lt \Omega_c \\ 0, & \mathrm{otherwise}\end{array}\right.$
$\left. \begin{array}{ll} 1, & -M \leq n \leq M \\ 0, & \mathrm{otherwise} \end{array} \right\}$

References