Let $x(\dot)$ be a wide-sense stationary process with:
Let $y(t) = h \ast x(t)$. Then, the following relations are true:
$$ E[y(t)] = H(j0) \mu_x $$
$$ R_{yx}(\tau) = h \ast R_{xx}(\tau) $$
$$ C_{yx}(\tau) = h \ast C_{xx} (\tau) $$
$$ R_{xy}(\tau) = \overleftarrow{h} \ast R_{xx}(\tau) $$
$$ C_{xy}(\tau) = \overleftarrow{h} \ast C_{xx}(\tau) $$
$$ R_{yy}(\tau) = h \ast \overleftarrow{h} \ast R_{xx}(\tau) $$
$$ R_{yy}(\tau) = h \ast \overleftarrow{h} \ast C_{xx}(\tau) $$
Given $y = h \ast x$ and $z = g \ast w$:
$$ R_{yz}(\tau) = h \ast \overleftarrow{g} \ast R_{xw}(\tau) $$
Main article: Power spectral density
CT case:
$$ R_{xx}(\tau) \leftrightarrow S_{xx}(j\omega) $$ $$ C_{xx}(\tau) \leftrightarrow D_{xx}(j\omega) $$
DT case:
$$ R_{xx}[m] \leftrightarrow S_{xx}(e^{j\Omega}) $$ $$ C_{xx}[m] \leftrightarrow D_{xx}(e^{j\Omega}) $$