A zero-input response (ZIR), or the undriven response, of a state-space system is its output when the input $\mathbf{x} = 0$. In other words, the ZIR is the response of the system to its initial conditions.
To find the ZIR of a CT state-space system:
$$ \mathbf{x} \equiv 0 $$
$$ \dot{\mathbf{q}}(t) = \mathbf{A}\mathbf{q}(t) $$
A possible solution is:
$$ \mathbf{q}(t) = \mathbf{v}e^{\lambda t} $$
When we plug it into the state evolution equation, we get:
$$ e^{\lambda t} \lambda \mathbf{v} = \mathbf{A}\mathbf{v} e^{\lambda t} $$
This tells us that any possible $\lambda$ is an eigenvalue of the matrix that has the associated eigenvector $\mathbf{v}$.
To find the ZIR of a DT state-space system:
$$ \mathbf{x} \equiv 0 $$
$$ \mathbf{q}[n+1] = \mathbf{A}\mathbf{q}[n] $$
A possible solution is: $$ \mathbf{q}(t) = \lambda^n\mathbf{v}$$
When we plug it into the state evolution equation, we get:
$$ \lambda^{n+1}\mathbf{v} = \lambda^n \mathbf{A}\mathbf{v} $$
We can simplify this to:
$$ \lambda \mathbf{v} = \mathbf{A}\mathbf{v} $$
This is the same as the CT case! This tells us that any possible $\lambda$ is an eigenvalue of the matrix that has the associated eigenvector $\mathbf{v}$.
Any $\lambda$ and $\mathbf{v} \neq \mathbf{0}$ that satisfy the above equation is an eigenvalue/eigenvector pair.
Let's now try to find these eigenvalue/eigenvector pairs. We can rewrite the above equation as:
$$ (\lambda \textbf{I} - \textbf{A}) \mathbf{v} = 0 $$ For any value of $\lambda$, if $(\lambda \textbf{I} - \textbf{A})$ is invertible (in other words, if $\mathrm{det} (\lambda \textbf{I} - \textbf{A}) \neq 0$), then $\mathbf{v} = \mathbf{0}$, so that $\lambda$ is not an eigenvalue. To find eigenvalues, we can set $\lambda \textbf{I} - \textbf{A}) = 0$.
Using the characteristic equation, we can find the eigenvalues and eigenvectors.
Solutions to the state evolution equation have the following form:
$$ \mathbf{q}(t) = \alpha_1 \mathbf{v}_1 e^{\lambda_1t} + \alpha_2 \mathbf{v}_2 e^{\lambda_2t} + \dots + \alpha_L \mathbf{v}_L e^{\lambda_Lt} $$
For an eigenvalue $\lambda$, the associated eigenvector $\mathbf{v}$ can be found by solving:
$$ (\lambda \textbf{I} - \textbf{A}) \mathbf{v} = 0 $$
for a solution $\mathbf{v} \neq \mathbf{0}$.
In summary, the modal solutions of a CT system ZIR is:
$$ \mathbf{q}(t) = \sum_{i=1}^{L} \alpha_i \mathbf{v}_i e^{\lambda_i t} $$
Where the weights $\alpha_i$ are determined by the initial conditions:
$$ \mathbf{q}(0) = \sum_{i=1}^{L} \alpha_i \mathbf{v}_i $$
The initial conditions are a linear combination of the eigenvectors.
Asymptotic stability is when the modal solutions to a system for any initial conditions go to zero.
If $\mathrm{Re}\{\lambda_i\}<0$ for all $i$, then $\mathbf{q}(t) \to \mathbf{0}$ for any initial conditions $\mathbf{q}(0)$.
In other words, all eigenvalues/poles must be on the left-half plane on the complex s-plane.
If $\left|\lambda_i\right|<1$ for all $i$, then $\mathbf{q}[n] \to \mathbf{0}$ for any initial conditions $\mathbf{q}[0]$.
In other words, all eigenvalues/poles must be inside the unit circle on the complex z-plane.