Table of Contents

Zero-input response

A zero-input response (ZIR), or the undriven response, of a state-space system is its output when the input $\mathbf{x} = 0$. In other words, the ZIR is the response of the system to its initial conditions.

CT case

To find the ZIR of a CT state-space system:

$$ \mathbf{x} \equiv 0 $$

$$ \dot{\mathbf{q}}(t) = \mathbf{A}\mathbf{q}(t) $$

A possible solution is:

$$ \mathbf{q}(t) = \mathbf{v}e^{\lambda t} $$

When we plug it into the state evolution equation, we get:

$$ e^{\lambda t} \lambda \mathbf{v} = \mathbf{A}\mathbf{v} e^{\lambda t} $$

This tells us that any possible $\lambda$ is an eigenvalue of the matrix that has the associated eigenvector $\mathbf{v}$.

DT case

To find the ZIR of a DT state-space system:

$$ \mathbf{x} \equiv 0 $$

$$ \mathbf{q}[n+1] = \mathbf{A}\mathbf{q}[n] $$

A possible solution is: $$ \mathbf{q}(t) = \lambda^n\mathbf{v}$$

When we plug it into the state evolution equation, we get:

$$ \lambda^{n+1}\mathbf{v} = \lambda^n \mathbf{A}\mathbf{v} $$

We can simplify this to:

$$ \lambda \mathbf{v} = \mathbf{A}\mathbf{v} $$

This is the same as the CT case! This tells us that any possible $\lambda$ is an eigenvalue of the matrix that has the associated eigenvector $\mathbf{v}$.

Finding eigenvalues and eigenvectors

Any $\lambda$ and $\mathbf{v} \neq \mathbf{0}$ that satisfy the above equation is an eigenvalue/eigenvector pair.

Let's now try to find these eigenvalue/eigenvector pairs. We can rewrite the above equation as:

$$ (\lambda \textbf{I} - \textbf{A}) \mathbf{v} = 0 $$ For any value of $\lambda$, if $(\lambda \textbf{I} - \textbf{A})$ is invertible (in other words, if $\mathrm{det} (\lambda \textbf{I} - \textbf{A}) \neq 0$), then $\mathbf{v} = \mathbf{0}$, so that $\lambda$ is not an eigenvalue. To find eigenvalues, we can set $\lambda \textbf{I} - \textbf{A}) = 0$.

Using the characteristic equation, we can find the eigenvalues and eigenvectors.

Solutions to the state evolution equation have the following form:

$$ \mathbf{q}(t) = \alpha_1 \mathbf{v}_1 e^{\lambda_1t} + \alpha_2 \mathbf{v}_2 e^{\lambda_2t} + \dots + \alpha_L \mathbf{v}_L e^{\lambda_Lt} $$

For an eigenvalue $\lambda$, the associated eigenvector $\mathbf{v}$ can be found by solving:

$$ (\lambda \textbf{I} - \textbf{A}) \mathbf{v} = 0 $$

for a solution $\mathbf{v} \neq \mathbf{0}$.

In summary, the modal solutions of a CT system ZIR is:

$$ \mathbf{q}(t) = \sum_{i=1}^{L} \alpha_i \mathbf{v}_i e^{\lambda_i t} $$

Where the weights $\alpha_i$ are determined by the initial conditions:

$$ \mathbf{q}(0) = \sum_{i=1}^{L} \alpha_i \mathbf{v}_i $$

The initial conditions are a linear combination of the eigenvectors.

Asymptotic stability

Asymptotic stability is when the modal solutions to a system for any initial conditions go to zero.

CT case

If $\mathrm{Re}\{\lambda_i\}<0$ for all $i$, then $\mathbf{q}(t) \to \mathbf{0}$ for any initial conditions $\mathbf{q}(0)$.

In other words, all eigenvalues/poles must be on the left-half plane on the complex s-plane.

DT case

If $\left|\lambda_i\right|<1$ for all $i$, then $\mathbf{q}[n] \to \mathbf{0}$ for any initial conditions $\mathbf{q}[0]$.

In other words, all eigenvalues/poles must be inside the unit circle on the complex z-plane.