Common probability distributions
Gaussian/Normal
- Continuous
- Parameters
- μ∈R (mean)
- σ2>0 (variance)
- Support: x∈R
- PDF: 1σ√2πe−12(x−μσ)2
- Mean/expectation: μ
- Variance: σ2
Calculating CDF
P(X<x) for X∼N(mu,sigma)
p = normcdf(x, mu, sigma)
Calculating inverse CDF or quantile
P(X≤q)=1−alpha for X∼N(mu,sigma)
q = norminv(1 - alpha, mu, sigma)
Binomial distribution
- Discrete
- Parameters
- n∈N0 (number of trials)
- p∈[0,1] (probability of success of single trial)
- Support: {0,1,…,n}
- PMF: (nk)pk(1−p)n−k
- Mean: np
- Variance: np(p−1)
Bernoulli
- Discrete
- Special case of binomial for n=1
- Parameter: p∈[0,1] (probability of success)
- Support: {0,1} (either 0 or 1)
- PMF: pk(1−p)1−k
- Mean/expectation: p
- Variance: p(1−p)
Poisson
- Discrete
- Parameter: λ>0
- Support: N0 (0, 1, …)
- PMF: λke−λk!
- Mean/expectation: λ
- Variance: λ
Exponential
- Continuous
- Parameter: λ>0 (rate)
- Support: [0,∞]
- Mean: 1λ
- Variance: 1λ2