2025-08-14 04:28 1/3 Bayesian statistics

Bayesian statistics

The Bayesian influence is using a likelihood function \$L n(\theta)\$ that is weighted by prior knowledge.

The Bayesian approach is using sample data to update prior beliefs, forming posterior beliefs. To do this, we model the parameter as a random variable, **even though it is not.**

The **prior distribution** is the distribution of the parameter "random variable." The **posterior distribution** is the distribution of the parameter "random variable" given sample data.

Conjugate prior

A prior distribution is the **conjugate** to the data model if the posterior model is in the same distribution family as the prior model. Having a more general prior and more specific likelihood model makes the prior more likely to be a conjugate prior. Some examples of conjugate models to data models are:

- Gamma prior with exponential data model
- Beta prior with Bernoulli data model
- Gaussian prior with Gaussian data model

Setup of Bayesian statistics problem

\$\pi(\cdot)\$: prior distribution. It could be uniform, exponential, Gaussian, etc.

\$X 1, \ldots, X n\$: sample of \$n\$ random variables

 $L_n(\cdot | \theta)$: joint pdf of X_1 , $\cdot \in \Delta$, where $\cdot \in \Delta$. It is equal to the likelihood from the frequentist approach.

Applying Bayes' formula, we have:

 $\pi X = \pi X$ 1, \ldots, X n \propto L n(X 1, \ldots, X n \theta) \pi(\theta)\$

 $\pi(X_1, \ldots, X_n) = \frac{L_n(X_1, \ldots, X_n|\theta)}{\int_{x_n}\theta(X_1, \ldots, X_n|\theta)} {\int_{x_n}\theta(X_1, \ldots, X_n|\theta)} {\int_{$

From this updated PDF, we can extract the new parameters (hyperparameters) of the distribution of the parameter.

Bernoulli experiment with Beta prior

Let $X i \sim Ber(\theta)$.

Select a Beta prior for the parameter \$\theta\$. That is, \$\pi(\theta) \sim {\rm Beta}(a, b)\$

First, calculate the joint pdf, or the likelihood function.

```
\L_n(X_1, \ldots, X_n \mid \theta) = p_n(X_1, \ldots, X_n \mid \theta) = \theta^{\sum_i 1}^n X_i  (1-\theta)^{n-\sum_{i=1}^n X_i}$
```

Then, update the distribution.

```
 $\phi(\theta_X_1, \theta_X_n) \right L_n(X_1, \theta_X_n) \to L_n(X_1, \theta_X_n | \theta_X_n
```

So the new parameters (for the Beta distribution describing the parameter as a random variable) are:

$$a' = a+\sum \{i=1\}^n X i$$

Noninformative prior

If we have no prior information about the parameter, we can choose a prior with constant pdf on \$\Theta\$.

- If \$\Theta\$ is bounded, the distribution is uniform on \$\Theta\$.
- If \$\Theta\$ is unbounded, the prior is an **improper prior.** Formally, \$\pi(\theta) \equiv 1\$.
 - In general, a prior is improper iff $\left(\right) d\theta = \inf .$
 - Bayes' formula still works.

Bayesian confidence region

A Bayesian confidence region with level $\alpha \$ is a random subset $\mathbf{R}\$ of $\mathbf{R}\$ of $\mathbf{R}\$

```
\boldsymbol{P}[\boldsymbol R \mid \boldsymbol R \mid X 1, \boldsymbol R \mid X 1, \boldsymbol X n] = 1 - \boldsymbol S
```

The randomness comes from the prior distribution.

Bayesian estimation

One Bayes estimator is the posterior mean:

```
\hat X = \frac{X 1, \ldots X}{1, \ldots X}
```

Another estimator is the point that maximizes the posterior distribution, called the MAP (maximum a posteriori):

2025-08-14 04:28 3/3 Bayesian statistics

 $\hat \ \MAP = {\rm MAP} = {\rm MAP} = {\rm MAP} = L_n (X_1, \ldots, X_1, \ldots, X_n \mid \heta) \pi(X_1, \ldots, X_n$

From:

https://www.jaeyoung.wiki/ - Jaeyoung Wiki

Permanent link:

https://www.jaeyoung.wiki/kb:bayesian_statistics

Last update: 2024-04-30 04:03