2025-12-14 01:36 1/2 Comparator

Comparator

Comparators compare two voltages and output "high" or "low" based on which voltage is higher. A slightly modified version of the op-amp assumptions apply:

×

$$$$i + = i - = 0 $$$$
 $$$v + > v - \to V {OUT} = V {DD} $$$

Note the following:

- The assumption $v_+ = v_-$ is no longer true because the circuit is not in negative feedback.
- There are only two possible values for the output voltage \$v {OUT}\$: \$V {DD}\$ and \$V {SS}\$.

Solving comparator problems

When solving comparator problems, you have to essentially solve the circuit for each possible state. Luckily, there are only two possible states:

- $v {OUT} = V {DD}$
- $v {OUT} = V {SS}$

For a comparator in positive feedback,

- The voltage at the positive input terminal \$v_+\$ is determined purely by the output voltage.
- The voltage at the negative input terminal \$v -\$ is determined by the input voltage.

Let's look at this specific example:

No matter the state of the circuit, this relation is true due to the voltage divider relation:

$$$$ v + = \frac{R 2}{R 1+R 2} v {OUT} $$$$

And the negative terminal voltage is simply equal to the input voltage:

$$$$$
 $v_{-} = v_{IN} $$

Let's first look at the case where $v_- < v_+$, so $v_{OUT} = V$. In this case,

$$$$$
 v + = $\frac{R 2}{R 1+R 2} V $$

This means that this circuit will stay in this state as long as $v_- < \frac{R_2}{R_1+R_2} V$. If v_- crosses the threshold $\frac{R_2}{R_1+R_2} V$, the output of the circuit will change to $v_- V$.

Let's now look at the other case, where $v_- > v_+$, so $v_{OUT} = -V$. In this case,

$$v_+ = \frac{R_2}{R_1+R_2} (-V) = -\frac{R_2}{R_1+R_2} V$$

This means that this circuit will stay in this state as long as $v_- > - \frac{R_2}{R_1 + R_2} V$. If v_- crosses the threshold $-\frac{R_2}{R_1 + R_2} V$, the output of the circuit will change to $v_{OUT} = V$.

To summarize the results, if $v_{OUT} = V$, for v_{OUT} to transition to -V, v_{in} has to become greater than $\frac{R_2}{R_1+R_2}$ V\$. And if $v_{OUT} = -V$, for v_{OUT} to transition to V, v_{in} has to become less than $-\frac{R_2}{R_1+R_2}$ V\$. Notice that the threshold for the input voltage changes depending on the current output voltage. This gives us hysteresis.

Let's plot the transfer curve (output voltage as a function of input voltage) of this behavior.

Notice the arrows on the inner rectangle. They signify that to go from a high output to low output, the input must cross $\frac{R_2}{R_1+R_2}$ V\$, whereas to go from a low output to a high output, the input must cross $\frac{R_2}{R_1+R_2}$ V\$.

What if we apply a triangle wave to the input?

From:

https://www.jaeyoung.wiki/ - Jaeyoung Wiki

Permanent link:

https://www.jaeyoung.wiki/kb:comparator

Last update: 2024-04-30 04:03