Show pageOld revisionsBacklinksExport to PDFBack to top This page is read only. You can view the source, but not change it. Ask your administrator if you think this is wrong. ====== Table of Fourier transforms ====== ===== CTFT ===== $$ x(t) \leftrightarrow X(j\omega) $$ ^ $x(t)$ (CT signal) ^ $X(j\omega)$ (CTFT) ^ | $\delta(t)$ | $1$ | | $\delta(t - t_0)$ | $e^{-j\omega t_0}$ | | $1$ | $2\pi \delta(\omega)$ | | $e^{j\omega_0 t}$ | $2\pi \delta(\omega - \omega_0)$ | | $e^{-at}u(t), \mathrm{Re}\{a\} > 0$ | $\frac{1}{\alpha + j\omega}$ | | $u(t)$ | $\frac{1}{j\omega} + \pi \delta(\omega)$ | | $\frac{\sin \omega_c t}{\pi t}$ | $\left\{ \begin{array}{ll} 1, & -\omega_c < \omega < \omega_c \\ 0, & \mathrm{otherwise} \end{array}\right.$ | | $\left. \begin{array}{ll} 1, & -M \leq n \leq M \\ 0, & \mathrm{otherwise} \end{array} \right\}$ | $\frac{\sin \omega M}{\omega / 2}$ | ===== DTFT ===== $$ x[n] \leftrightarrow X(j\Omega) $$ ^ $x[n]$ (DT signal) ^ $X(j\Omega), -\pi \lt \Omega \leq \pi $ (DTFT)^ | $\delta[n]$ | $1$ | | $\delta[n - n_0]$ | $e^{-j\Omega n_0}$ | | $1$ | $2\pi \delta(\Omega)$ | | $e^{j\Omega_0 n} (-\pi \lt \Omega_0 \leq \pi)$ | $2\pi \delta(\Omega - \Omega_0)$ | | $a^n u[n], |a| \lt 1$ | $\frac{1}{1 - ae^{-j\Omega}}$ | | $u[n]$ | $\frac{1}{1-e^{-j\Omega}} + \pi\delta(\Omega)$ | | $\frac{\sin \Omega_c n}{\pi n}$ | $\left\{ \begin{array}{ll} 1, & -\Omega_c \lt \Omega \lt \Omega_c \\ 0, & \mathrm{otherwise}\end{array}\right.$ | | $\left. \begin{array}{ll} 1, & -M \leq n \leq M \\ 0, & \mathrm{otherwise} \end{array} \right\}$ | $\frac{\sin [\Omega(2M+1)/2]}{\sin(\Omega/2)}$ ===== References ===== * //Oppenheim, A. and Verghese, G., 2016. Signals, systems and inference. 1st ed.// kb/fourier_transform_table.txt Last modified: 2024-04-30 04:03by 127.0.0.1