kb:hypothesis_testing

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
kb:hypothesis_testing [2021-05-10 14:28] jaeyoungkb:hypothesis_testing [2024-04-30 04:03] (current) – external edit 127.0.0.1
Line 27: Line 27:
 Since we are just comparing $P(H_0|R = r)$ and $P(H_1|R = r)$, we can cancel out the $f_R(r)$ on both sides, so it is equivalent to comparing $P(H_0) f_{R|H}(r|H_0)$ and $P(H_1) f_{R|H}(r|H_1)$: Since we are just comparing $P(H_0|R = r)$ and $P(H_1|R = r)$, we can cancel out the $f_R(r)$ on both sides, so it is equivalent to comparing $P(H_0) f_{R|H}(r|H_0)$ and $P(H_1) f_{R|H}(r|H_1)$:
  
-  * If $P(H_0) f_{R|H}(r|H_0) > P(H_1) f_{R|H}(r|H_1)$, then announce $'H_0'$.+  * If $P(H_0) f_{R|H}(r|H_0) > P(H_0) f_{R|H}(r|H_0)$, then announce $'H_0'$.
   * If $P(H_0) f_{R|H}(r|H_0) < P(H_1) f_{R|H}(r|H_1)$, then announce $'H_1'$.   * If $P(H_0) f_{R|H}(r|H_0) < P(H_1) f_{R|H}(r|H_1)$, then announce $'H_1'$.
  
Line 34: Line 34:
 The likelihood ratio $\Lambda(r)$ is defined as: The likelihood ratio $\Lambda(r)$ is defined as:
  
-$$ \Lambda(r) = \frac{P(H_1) f_{R|H}(r|H_1)}{f_{R|H}(r|H_0)} $$+$$ \Lambda(r) = \frac{f_{R|H}(r|H_1)}{f_{R|H}(r|H_0)} $$
  
 We can compare this likelihood ratio to the threshold $\eta$, which is the ratio between the a priori probabilities: We can compare this likelihood ratio to the threshold $\eta$, which is the ratio between the a priori probabilities:
Line 40: Line 40:
 $$ \eta = \frac{P(H_1)}{P(H_0)} $$ $$ \eta = \frac{P(H_1)}{P(H_0)} $$
  
-If $ \Lambda{r> \eta $, then announce $'H_1'$. Otherwise, announce $'H_0'$.+If $ \Lambda(r> \eta $, then announce $'H_1'$. Otherwise, announce $'H_0'$.
  
 ===== Terminology for different probabilities ===== ===== Terminology for different probabilities =====
  • kb/hypothesis_testing.1620656908.txt.gz
  • Last modified: 2024-04-30 04:03
  • (external edit)