2025-08-16 08:21 1/2 Hypothesis testing

Hypothesis testing

Hypothesis testing involves deducing the quantity of a hypothesis \$H\$, which takes on one of the values \$H_0, H_1, \dots\$ from a measurement \$R=r\$.

Maximum a posteriori rule

We can do this by making the decision that minimizes the probability of error *conditional* on the measurement R = r.

- If $P(H_1|R=r) > P(H_0|R=r)$, that is, if it is more likely that $H=H_1$ than $H=H_0$ given that R=r, we decide H 1's.
- Otherwise, if $P(H_1|R = r) < P(H_0|R = r)$, that is, if it is more likely that $H = H_1$ than $H = H_1$ than R = r, we decide H_0 .

The resulting conditional probability of error is:

```
P(\mathbf{rror}|R=r) = \min\{1 - P(H 0|R=r), 1 - P(H 1|R=r)\}
```

The conditional probabilities $P(H_1|R = r)$ and $P(H_0|R = r)$ are the *a posteriori* probabilities, as opposed to $P(H_1)$ and $P(H_0)$, the *a priori* probabilities.

The *a posteriori* probabilities can be calculated using Bayes' rule:

```
P(H_0|R = r) = \frac{P(H_0) f_{R|H}(r|H_0)}{f_{R(r)}} $$$$ P(H_1|R = r) = \frac{P(H_1) f_{R|H}(r|H_1)}{f_{R(r)}} $$$
```

where $f_{R|H}$ is the conditional PDF of the random variable R given a certain H, and f_{R} is the PDF of R.

Since we are just comparing $P(H_0|R = r)$ and $P(H_1|R = r)$, we can cancel out the $f_R(r)$ on both sides, so it is equivalent to comparing $P(H_0)$ $f_R|H(r|H_0)$ and $P(H_1)$ $f_R|H(r|H_1)$:

- If $P(H_0) f_{R|H}(r|H_0) > P(H_0) f_{R|H}(r|H_0)$, then announce H_0 .
- If $P(H_0) f_{R|H}(r|H_0) < P(H_1) f_{R|H}(r|H_1)$, then announce H_1' .

Likelihood ratio test

The likelihood ratio \$\Lambda(r)\$ is defined as:

```
\ \Lambda(r) = \frac{f {R|H}(r|H 1)}{f {R|H}(r|H 0)} $$
```

We can compare this likelihood ratio to the threshold \$\eta\$, which is the ratio between the a priori

probabilities:

If $\Lambda(r) > \alpha \$, then announce $\Lambda(r) > \alpha \$, then announce $\Lambda(r) > \alpha \$.

Terminology for different probabilities

Probability of miss (probability we announce $H = H \ 0$, when in reality $H = H \ 1$):

$$PM = P('H_0'|H_1)$$

Probability of false alarm (probability we announce H = H 1, when in reality H = H 0):

$$P_{FA} = P(H_1'|H_0)$$

Probability of detection (probability we announce H = H 1\$ given that H = H 1\$):

$$PD = P(H_1'|H_1)$$

True negative rate/specificity (probability we announce $H = H_0$ given that $H = H_0$):

$$$$1 - P {FA} = P('H 0' | H 0) $$$$

Positive predictive value (probability that $H = H_1$ given that we announce $H = H_1$):

Negative predictive value (probability that H = H = 0 given that we announce H = H = 0):

From:

https://www.jaeyoung.wiki/ - Jaeyoung Wiki

Permanent link:

https://www.jaeyoung.wiki/kb:hypothesis testing

Last update: 2024-04-30 04:03