kb:linear_regression

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
kb:linear_regression [2022-03-02 02:29] – ↷ Page name changed from kb:inear_regression to kb:linear_regression jaeyoungkb:linear_regression [2024-04-30 04:03] (current) – external edit 127.0.0.1
Line 88: Line 88:
  
 In other words, $R^2$ describes how much of the variation in $y$ is captured by the regression. In other words, $R^2$ describes how much of the variation in $y$ is captured by the regression.
 +
 +==== Predictive distribution ====
 +
 +Predictive error is the difference between the prediction and true value.
 +
 +$$ \hat{Y}(x) - a^* - b^*x = \frac{1}{n} \sum_{i = 1}^{n} \varepsilon_i \left\{ 1 + \frac{(x_i - \bar{x})(x - \bar{x})}{\sigma_x^2} \right\} $$
 +
 +The expectation is $0$, of course:
 +
 +$$ \mathbb{E}[\hat{Y}(x) - a^* - b^*x] = 0 $$
 +
 +The variance is:
 +
 +$$ \mathrm{Var}[\hat{Y}(x) - a^* - b^*x] = \mathbb{E}[(\hat{Y}(x) - a^* - b^*x)^2] = \frac{\sigma^2}{n} \left( \frac{(x - \bar{x})^2}{\sigma_x^2} \frac{n-1}{n} + 1 \right) $$
 +
 +The distribution is Gaussian if $\varepsilon_i$ are Gaussian. If it is Gaussian, then we can easily compute [[kb:confidence_interval|confidence intervals]].
  
 ===== Multivariate linear regression ===== ===== Multivariate linear regression =====
  • kb/linear_regression.1646188164.txt.gz
  • Last modified: 2024-04-30 04:03
  • (external edit)