kb:linear_regression

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
kb:linear_regression [2022-03-02 02:35] – [Quantifying error] jaeyoungkb:linear_regression [2024-04-30 04:03] (current) – external edit 127.0.0.1
Line 97: Line 97:
 The expectation is $0$, of course: The expectation is $0$, of course:
  
 +$$ \mathbb{E}[\hat{Y}(x) - a^* - b^*x] = 0 $$
 +
 +The variance is:
 +
 +$$ \mathrm{Var}[\hat{Y}(x) - a^* - b^*x] = \mathbb{E}[(\hat{Y}(x) - a^* - b^*x)^2] = \frac{\sigma^2}{n} \left( \frac{(x - \bar{x})^2}{\sigma_x^2} \frac{n-1}{n} + 1 \right) $$
 +
 +The distribution is Gaussian if $\varepsilon_i$ are Gaussian. If it is Gaussian, then we can easily compute [[kb:confidence_interval|confidence intervals]].
  
 ===== Multivariate linear regression ===== ===== Multivariate linear regression =====
  • kb/linear_regression.1646188548.txt.gz
  • Last modified: 2024-04-30 04:03
  • (external edit)