kb:signal_detection

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
kb:signal_detection [2021-05-12 22:07] jaeyoungkb:signal_detection [2024-04-30 04:03] (current) – external edit 127.0.0.1
Line 17: Line 17:
 $$ \frac{\prod_{n = 0}^{L - 1} \left( \frac{1}{\sigma \sqrt{2 \pi}}e^{-\frac{(r[n] - s[n])^2}{2 \sigma^2}} \right)}{\prod_{n = 0}^{L - 1} \left( \frac{1}{\sigma \sqrt{2 \pi}}e^{-\frac{(r[n])^2}{2 \sigma^2}} \right)} \overbrace{\gt}^{'H_1'} \underbrace{\lt}_{'H_0'} \frac{p_0}{p_1} $$ $$ \frac{\prod_{n = 0}^{L - 1} \left( \frac{1}{\sigma \sqrt{2 \pi}}e^{-\frac{(r[n] - s[n])^2}{2 \sigma^2}} \right)}{\prod_{n = 0}^{L - 1} \left( \frac{1}{\sigma \sqrt{2 \pi}}e^{-\frac{(r[n])^2}{2 \sigma^2}} \right)} \overbrace{\gt}^{'H_1'} \underbrace{\lt}_{'H_0'} \frac{p_0}{p_1} $$
  
-$$ \sum_{n = 0}^{L - 1} (r[n] s[n]) \overbrace{\gt}^{'H_1'} \underbrace{\lt}_{'H_0'} \sigma^2 \ln \eta + \frac{\varepsilon}{2} = \gamma $$+After some simplifications, we get:
  
-For +$$ g = \sum_{n = 0}^{L - 1} r[n] s[n] \overbrace{\gt}^{'H_1'} \underbrace{\lt}_{'H_0'} \sigma^2 \ln \eta + \frac{\varepsilon}{2} = \gamma $$ 
 + 
 +where $\eta = \frac{p_0}{p_1}$ and $\varepsilon = \sum_{n = 0}^{L - 1} s^2[n]$ (Energy) 
 + 
 +Let $G$ be the random variable of which $g$ is a realized value. Similarly, $R[n]$ is the random process of which $r[n]$ is a realized instance. Then, 
 + 
 +$$ G = \sum_{n = 0}^{L - 1} R[n]s[n] $$ 
 + 
 +The distributions of $G$ are: 
 + 
 +$$ H_0: G \sim \mathcal{N}(0, \sigma^2 \varepsilon) $$ 
 +$$ H_1: G \sim \mathcal{N}(\varepsilon, \sigma^2 \varepsilon) $$ 
 + 
 +Note that the variance is the same in both cases. 
 + 
 +===== Matched filter ===== 
 + 
 +A matched filter is used to detect a known signal $s[n]$ in white Gaussian noise. 
 + 
 +The filter is the time reverse of the signal: 
 + 
 +$$ h[n] = s[-n] $$ 
 + 
 +In the frequency domain: 
 + 
 +$$ H(e^{j\Omega}) = S(e^{-j\Omega}) = |S(e^{j\Omega})| e^{-j\angle S(e^{j\Omega})} $$ 
 + 
 +Consider filtering a noisy signal $r[n]$ with the matched filter $h[n]$: 
 + 
 +$$ g[n] = (h \ast r)[n] = (\overleftarrow{s} \ast r)[n] $$ 
 + 
 +In the ideal case where $r[n] = s[n]$, the output is deteministic autocorrelation: 
 + 
 +$$ g[n] = (h \ast r)[n] = (s \ast \overleftarrow{s})[n] = \bar{R}_{ss}[n] $$ 
 + 
 +The matched filter maximizes the spread between the $H_0$ and $H_1$ cases. 
 + 
 +Compare the $g[n]$ with the threshold $\gamma = \sigma_W^2 \ln \frac{p_0}{p_1} + \frac{\varepsilon}{2}$. If $g[n] > \gamma$, declare $'H_1'$. Otherwise, declare $'H_0'$. 
 + 
 +===== Probability of error ===== 
 + 
 +The conditional probability of false alarm is: 
 + 
 +$$ P_{FA} = Q\left(\frac{\gamma}{\sigma\sqrt{\varepsilon}}\right) $$ 
 + 
 +$$ P_M = 1 - Q\left(\frac{\gamma - \varepsilon}{\sigma\sqrt{\varepsilon}}\right) $$ 
 + 
 +Total probability is: 
 + 
 +$$ P_e = p_0 P_{FA} + p_1 P_M $$
  • kb/signal_detection.1620857248.txt.gz
  • Last modified: 2024-04-30 04:03
  • (external edit)