kb:signal_detection

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
kb:signal_detection [2021-05-12 22:20] jaeyoungkb:signal_detection [2024-04-30 04:03] (current) – external edit 127.0.0.1
Line 36: Line 36:
 ===== Matched filter ===== ===== Matched filter =====
  
 +A matched filter is used to detect a known signal $s[n]$ in white Gaussian noise.
 +
 +The filter is the time reverse of the signal:
 +
 +$$ h[n] = s[-n] $$
 +
 +In the frequency domain:
 +
 +$$ H(e^{j\Omega}) = S(e^{-j\Omega}) = |S(e^{j\Omega})| e^{-j\angle S(e^{j\Omega})} $$
 +
 +Consider filtering a noisy signal $r[n]$ with the matched filter $h[n]$:
 +
 +$$ g[n] = (h \ast r)[n] = (\overleftarrow{s} \ast r)[n] $$
 +
 +In the ideal case where $r[n] = s[n]$, the output is deteministic autocorrelation:
 +
 +$$ g[n] = (h \ast r)[n] = (s \ast \overleftarrow{s})[n] = \bar{R}_{ss}[n] $$
 +
 +The matched filter maximizes the spread between the $H_0$ and $H_1$ cases.
 +
 +Compare the $g[n]$ with the threshold $\gamma = \sigma_W^2 \ln \frac{p_0}{p_1} + \frac{\varepsilon}{2}$. If $g[n] > \gamma$, declare $'H_1'$. Otherwise, declare $'H_0'$.
 +
 +===== Probability of error =====
 +
 +The conditional probability of false alarm is:
 +
 +$$ P_{FA} = Q\left(\frac{\gamma}{\sigma\sqrt{\varepsilon}}\right) $$
 +
 +$$ P_M = 1 - Q\left(\frac{\gamma - \varepsilon}{\sigma\sqrt{\varepsilon}}\right) $$
 +
 +Total probability is:
 +
 +$$ P_e = p_0 P_{FA} + p_1 P_M $$
  • kb/signal_detection.1620858008.txt.gz
  • Last modified: 2024-04-30 04:03
  • (external edit)