kb:common_probability_distributions

Common probability distributions

  • Continuous
  • Parameters
    • $\mu \in \mathbb{R}$ (mean)
    • $\sigma^2 > 0$ (variance)
  • Support: $x \in \mathbb{R}$
  • PDF: $\frac{1}{\sigma \sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$
  • Mean/expectation: $\mu$
  • Variance: $\sigma^2$

$P(X < x)$ for $X \sim \mathcal{N}(mu, sigma)$

p = normcdf(x, mu, sigma)

$\mathbb{P}(X \leq q) = 1 - alpha$ for $X \sim \mathcal{N}(mu, sigma)$

q = norminv(1 - alpha, mu, sigma)
  • Discrete
  • Parameters
    • $n \in \mathbb{N}_0$ (number of trials)
    • $p \in [0, 1]$ (probability of success of single trial)
  • Support: $\{0, 1, \ldots, n\}$
  • PMF: ${n \choose k} p^k (1-p)^{n-k}$
  • Mean: $np$
  • Variance: $np(p-1)$
  • Discrete
  • Special case of binomial for $n=1$
  • Parameter: $p \in [0, 1]$ (probability of success)
  • Support: $\{0, 1\}$ (either 0 or 1)
  • PMF: $p^k(1-p)^{1-k}$
  • Mean/expectation: $p$
  • Variance: $p(1-p)$
  • Discrete
  • Parameter: $\lambda > 0$
  • Support: $\mathbb{N}_0$ (0, 1, …)
  • PMF: $\frac{\lambda^ke^{-\lambda}}{k!}$
  • Mean/expectation: $\lambda$
  • Variance: $\lambda$
  • Continuous
  • Parameter: $\lambda > 0$ (rate)
  • Support: $[0, \infty]$
  • Mean: $\frac{1}{\lambda}$
  • Variance: $\frac{1}{\lambda^2}$
  • kb/common_probability_distributions.txt
  • Last modified: 2024-04-30 04:03
  • by 127.0.0.1