kb:fourier_transform

Fourier transform

$$ x[n] \leftrightarrow X(e^{j\Omega}) $$

$$ X(e^{j\Omega}) = \sum_{k = -\infty}^{\infty} x[k] e^{-j\Omega k} $$

$$ x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\Omega}) e^{j\Omega n} d\Omega $$

$$ x(t) \leftrightarrow X(j\omega) $$

$$ X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt $$

$$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega $$

  • If the real part of a Fourier transform is even, and the imaginary part is odd, then the time-domain signal is real.
  • If a Fourier transform is continuous, then its corresponding signal is absolutely summable.
  • If a Fourier transform is purely imaginary, then its time-domain signal is odd.
  • kb/fourier_transform.txt
  • Last modified: 2024-04-30 04:03
  • by 127.0.0.1